La ESTRUCTURA SECUNDARIA está representada por la disposición espacial que adopta la cadena peptídica (estructura primaria) a medida que se sintetiza en los ribosomas. Es debida a los giros y plegamientos que sufre como consecuencia de la capacidad de rotación del carbono y de la formación de enlaces débiles (puentes de hidrógeno).
Las formas que pueden adoptar son:
a) Disposición espacial estable determina formas en espiral (configuración -helicoidal y las hélices de colágeno)
c) También existen secuencias en el polipéptido que no alcanzan una estructura secundaria bien definida y se dice que forman enroscamientos aleatorios. Por ejemplo, ver en las figuras anteriores los lazos que unen entre sí -hojas plegadas.
La ESTRUCTURA TERCIARIA esta representada por los superplegamientos y enrrollamientos de la estructura secundaria, constituyendo formas tridimensionales geométricas muy complicadas que se mantienen por enlaces fuertes (puentes disulfuro entre dos cisteinas) y otros débiles (puentes de hidrógeno; fuerzas de Van der Waals; interacciones iónicas e interacciones hidrofóbicas).
Desde el punto de vista funcional, esta estructura es la más importante pues, al alcanzarla es cuando la mayoría de las proteinas adquieren su actividad biológica o función.
Muchas proteínas tienen estructura terciaria globular caracterizadas por ser solubles en disoluciones acuosas, como la mioglobina o muchos enzimas.
La ESTRUCTURA CUATERNARIA está representada por el acoplamiento de varias cadenas polipeptídicas, iguales o diferentes, con estructuras terciarias (protómeros) que quedan autoensambladas por enlaces débiles, no covalentes. Esta estructura no la poseen, tampoco, todas las proteinas. Algunas que sí la presentan son: la hemoglobina y los enzimas alostéricos.
Propiedades de las proteínas
SOLUBILIDAD
Las proteinas son solubles en agua cuando adoptan una conformación globular. La solubilidad es debida a los radicales (-R) libres de los aminoácidos que, al ionizarse, establecen enlaces débiles (puentes de hidrógeno) con las moléculas de agua. Así, cuando una proteina se solubiliza queda recubierta de una capa de moléculas de agua (capa de solvatación) que impide que se pueda unir a otras proteinas lo cual provocaría su precipitación (insolubilización). Esta propiedad es la que hace posible la hidratación de los tejidos de los seres vivos.
CAPACIDAD AMORTIGUADORA
Las proteinas tienen un comportamiento anfótero y ésto las hace capaces de neutralizar las variaciones de pH del medio, ya que pueden comportarse como un ácido o una base y por tanto liberar o retirar protones (H+) del medio donde se encuentran.
DESNATURALIZACION Y RENATURALIZACION
La desnaturalización de una proteina se refiere a la ruptura de los enlaces que mantenian sus estructuras cuaternaria, terciaria y secundaria, conservandose solamente la primaria. En estos casos las proteinas se transforman en filamentos lineales y delgados que se entrelazan hasta formar compuestos fibrosos e insolubles en agua. Los agentes que pueden desnaturalizar a una proteina pueden ser: calor excesivo; sustancias que modifican el pH; alteraciones en la concentración; alta salinidad; agitación molecular; etc... El efecto más visible de éste fenómeno es que las proteinas se hacen menos solubles o insolubles y que pierden su actividad biológica.
La mayor parte de las proteinas experimentan desnaturalizaciones cuando se calientan entre 50 y 60 ºC; otras se desnaturalizan también cuando se enfrian por debajo de los 10 a 15 ºC.
La desnaturalización puede ser reversible (renaturalización) pero en muchos casos es irreversible.
ESPECIFICIDAD
Es una de las propiedades más características y se refiere a que cada una de las especies de seres vivos es capaz de fabricar sus propias proteinas (diferentes de las de otras especies) y, aún, dentro de una misma especie hay diferencias protéicas entre los distintos individuos. Esto no ocurre con los glúcidos y lípidos, que son comunes a todos los seres vivos.
La enorme diversidad protéica interespecífica e intraespecífica es la consecuencia de las múltiples combinaciones entre los aminoácidos, lo cual está determinado por el ADN de cada individuo.
La especificidad de las proteinas explica algunos fenómenos biológicos como: la compatibilidad o no de transplantes de órgános; injertos biológicos; sueros sanguíneos; etc... o los procesos alérgicos e incluso algunas infecciones.
Funciones de las proteínas
Las proteinas determinan la forma y la estructura de las células y dirigen casi todos los procesos vitales. Las funciones de las proteinas son específicas de cada una de ellas y permiten a las células mantener su integridad, defenderse de agentes externos, reparar daños, controlar y regular funciones, etc...Todas las proteinas realizan su función de la misma manera: por unión selectiva a moléculas. Las proteinas estructurales se agregan a otras moléculas de la misma proteina para originar una estructura mayor. Sin embargo,otras proteinas se unen a moléculas distintas: los anticuerpos a los antígenos específicos, la hemoglobina al oxígeno, las enzimas a sus sustratos, los reguladores de la expresión génica al ADN, las hormonas a sus receptores específicos, etc...
Función ESTRUCTURAL
-Algunas proteinas constituyen estructuras celulares:
• Ciertas glucoproteinas forman parte de las membranas celulares y actuan como receptores o facilitan el transporte de sustancias.
• Las histonas, forman parte de los cromosomas que regulan la expresión de los genes.
-Otras proteinas confieren elasticidad y resistencia a órganos y tejidos:
• El colágeno del tejido conjuntivo fibroso.
• La elastina del tejido conjuntivo elástico.
• La queratina de la epidermis.
Función ENZIMATICA
-Las proteinas con función enzimática son las más numerosas y especializadas. Actúan como biocatalizadores de las reacciones químicas del metabolismo celular.
Función HORMONAL
-Algunas hormonas son de naturaleza protéica, como la insulina y el glucagón (que regulan los niveles de glucosa en sangre) o las hormonas segregadas por la hipófisis como la del crecimiento o la adrenocorticotrópica (que regula la síntesis de corticosteroides) o la calcitonina (que regula el metabolismo del calcio).
No hay comentarios:
Publicar un comentario